This study presents the development and validation of a high-efficiency optical interface designed for ultra-high-concentration photovoltaic (UHCPV) systems, with a focus on enabling clean and sustainable solar energy conversion. A Fresnel lens serves as the primary optical concentrator in a novel system architecture that integrates advanced optical design with system-level thermal management. The proposed modeling framework combines detailed 3D ray tracing with coupled thermal simulations to accurately predict key performance metrics, including optical concentration ratios, thermal loads, and component temperature distributions. Validation against theoretical and experimental benchmarks demonstrates high predictive accuracies within 1% for optical efficiency and 2.18% for thermal performance. The results identify critical thermal thresholds for long-term operational stability, such as limiting mirror temperatures to below 52 ◦C and photovoltaic cell temperatures to below 130 ◦C. The model achieves up to 89.08% optical efficiency, with concentration ratios ranging from 240 to 600 suns and corresponding focal spot temperatures between 37.2 ◦C and 61.7 ◦C. Experimental benchmarking confirmed reliable performance, with the measured results closely matching the simulations. These findings highlight the originality of the coupled optical–thermal approach and its applicability to concentrated photovoltaic design and deployment. This integrated design and analysis approach supports the development of scalable, clean photovoltaic technologies and provides actionable insights for real-world deployment of UHCPV systems with minimal environmental impact.
Loading....